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Abstract

In this paper we develop local and global estimates for the solntion of
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Giorgi-Nash maximum principle.

*This work has been supported by the Hermes Research program under grant number
RDAN 86.1/3. The author was also supported by the National Aeronautics and Space Ad-
ministration under NASA contract NAS1-19420 while he was in residence at the Institute
for Computer Applications in Science and Engineering.

‘
1




1 Introduction

Domain decoraposition methods have recently become an efficient strategy
for solving large scale problems on parallel computers ([1}, {2], (3], [4], [5],
{6]). Nevertheless, they car also be used in order to couple different models
{11], {18]. In this paper we will examine a domain decomposition strategy
which can be applied to such situations.

This approact was introduced in order to solve several difficulties that
occur in fluid mechanics. In particular, our aim is to introduce several sub-
domains in order to do one of the following :

¢ Solve different problems on each subdomain.
¢ Use different kinds of approximation methods on each subdomain [7].

o Use “local refinement techniques” or “mesh adaptive technigues”, lo-
cally, per subdomain ([10]).

The subdomains fully overlap and the coupling is achieved through “fric-
tion” forces acting on the internal boundary of the domain, these friction
forces baing updated by an explicit time marching algorithra.

Several versions of this methodology have been studied in [15). In [15] the
emphasiz was on the imaplicit time discretization version of this algorithm,
we focus in this paper on the explicit version of this methodology. The
theoretical study of our method will be done on an Advection-Diffusion
problem, which will serve as our model problem. The analysis will be made
at the continuous level, independently of any (space) discretization strategy,
which means that the derived results will be mesh independent.

In the next section we develop a maximum principle for general second-
order elliptic problemn based on the De-Giorgi-Nash theory. In section 2 and
3, we develop estimates for the solution of the convection-diffusion problems
respectively with Direcllet-Neumann and Direchlet boundary conditions.
These results are based on the maximum principle of section 2. We then
apply these tools to the analysi~ of an explicit time marching algorithm. We
also study a fixed point method for the implicit time marching algorithm of
{15]. Practical applications of the time marching algorithm to real life CFD
problcins can be found in 14}, [19], {20], and [21).




2 Local estimates

In this section we shall establish a maximum principle for an arbitrary elliptic
operator of second order. These tools are central to the development of
our theory in order to derive the convergence analysis of the explicit time
marching algorithm. described in section (5.1).

Let L be an operator written under the form

Ly = a'¥(z)Dy;u + b (z)Diu + e(z Yu,

for any « in W2"(Q), with Q a bounded domain of R”. The coefficients
@b and ¢,i,j = 1,...,n are defined on Q. As usual, the repeated indices
indicate a summation from 1 to n.

We suppose that the operator L is strictly elliptic in 2 in the sense that
the matrix A4 of coeficients [a¥7] is strictly positive everywhere in 2. Let A
and A denote respectively the smallest and the largest eigenvalue of A. Let
D denote the determinant of the matrix .4 and D* = D/™, We have

0<A<D" <A

We suppose in addition that the coefficients a7, b' and ¢ are bounded in 1,
and that there exists two positive real numbers 4 and & such that -

A/A £, (L is uniformly elliptic) (1)

(Bl/A)? < 6. (2)

Now, we are in a position to state the principal result of this section,
proved ia annex.

Theorem 2.1 Let u € W2™(Q) and suppose that Lu > f with f € L)
and ¢ < 0. Then for all spheres B = Bar(y) of center y and radius 2R
included in @ and for all p > 0, we have :

WPn i < Callrgy LW + T 10}, 3)

where the constant Cr depends on (n,v, §R%,p), but is independent of c.
Above ut = maz(u,0).




Remark 2.1 The statement of the same theorem can be found in [12], un-
der the assumption

jel/A < 6. (4)

So, there the constant Cy; depends indirectly on ¢ through 6. That is
exactly what we want to avoid, since we would like this constent to be inde-
pendeni of ¢ (see section 5.1).

3 First fundamental estimate

Let i be a connected domain of R™ with Q. C 2 (Figore 1). The
boundaries of the two subdomains are defined as follows:

Iy = 82N EQe, (internal boundary)
i = 0Quoe N 2. { interface)
o = 0G\T;. (farfield boundary)

We denote by n the external anit normal vector to 952 or 9$%,..
et V be a given velocity field of an inviscid incompressible flow such that:

divV = 0 in Q,
Vn=90o0nT,.

(8)

We shall derive an estimate for the solution of the following Direchlet-
Neumann problem:

Lv = —-vAv+V -Vuv4 %—v in Q, (6)
v
5, = 9 on T, (8)

where the function g is given in H~1/2(T',) and the coefficient 7 is strictly
positive, and v is the diffusion cvefficient. Let W be the sub-space of H1(Q)
defined by

We={we H'(Q)|w=0o0n T} (9)
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We then define the following bilinear forms on W

a(v,w):/r;z/Vva-i-j{?div(Vv)w, (10)

(v,w):/ﬂvw. (11)

The first basic problem associated to (6)-(8), can be written as follows: Find
v € W satisfying :

a{v,w) + (1/7)(v,w) = 4 gwdl, Ywe W, (12)

Moreover, we assurae that the coefficierts v and r satisfy the following

relation:
vr < 1. (13)

This hypothesis is not necessary but simplifies the procfs to come. More-
over, it is mot restrictive, since we would like the convergence for small 7
(see section 5.1).

Lot d denotes the overlapping distance as described in the Figure 2. Let
then B be a real nuraber such that

0« 8<3/v/d,
and set
k= B/(vJT).

The first basic result states the global B! estimate of the solution of the
first basic problem (12) in terms of the boundary data g.

Lemma 3.1 There ezists a constant c, such that we have:

lvllve < (co/v)ligl-1/2.1s, (14)
Proof of lemma 3.1

By using the relation (5) we have the following equality:

/n vdiv(Ve) = 1/2 /0 div(Vv?)

it

1/2 / Viny?
r

0,Vove W,




Choosing w = v in (12), we th~n obtain
90 + (1%} = [ v (15)
o] Ty
From this equality we deduce the following estiinate:

Zlvliiq < Ngll-1 2500l fo.r,-

The application of the trace theorem yields the estimate (14), which implies
in particular

lollo.e < (co/2)ligll-1/21,. (16)

]
Let €; be the subdoraain of width -:.i; with external boundary I'; as described
in the Figure 2. Let K, = Bg(y) be the sphere of center y and radius f
There exist yi,...,yr belonging to Q; such that

Q21' = Uyeﬂ.‘BGi (:"/) C Uszl Ky,'
We define then X by setting
K=uU_K,.

The next lemma states the local estimate of the solution v of the first basic
problem (12).

Lemma 3.2 There exists a constant ¢y such thai:

[vfloo.x < erllvflog. (17)
where ¢y is a constant depending only on v,7,6d* and (3/2d)"/2.
Proof of lemma 3.2

The operator
L=-C

satisfies the assurnptions of the theorem 2.1, with ¢ = —1/r and f = 0.
Applying tben this theorem with p = 2, y € {}; we obtain

“v”m.k‘v S € ”v“(l.Bzdfa(y)'
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Therefore
19lleo,xy < erllolio,n, (18)

where ¢; is a constant depending only on v,7, éd? and (3/2d)"/2.
Applying the relation (18) to each K, we obtain:

flolloo.x < sup ey;llvfjo.q.

=1,
Setting ¢; = sup ¢, we finally have
J=1,..,1
Illeo.x < exlivflon- (19)
And the lemma is proved.
B

We shall now establish other local estimzies for the solution v of the first
second basic problem. For any M; in €, we introduce (see Figure 2):

¢ B; = the ball centered on M; of radius d/6,
e v; = exp(k(r® - d?/36)]}|v]lco,0B;-
We then have:
Lemma 8.3 The solution v of the first basic problem satisfies:
[0(M:)] < exp(—kd®/36)ivlcc,08; YM; € Q. (20)
Proof of lemma 3.3

The operator £ applied to v;, can be written in polar coordinates {with
r=MM):

Ly, = 4(-k%vr? — ky + gV.e,r + —1-)v,~.
p 47

Therefore £ i
2 4(—kPur? = 2V — — kv))vi.
Ly > 4(=k*vr 2IV edlr + (41_ k)Y, (21)
We set then :
o(r, k) = a(k)r? -+ b(k)7 + e(k), (22)
with
6



a(k) = =k

b(k)

-g—!V.e,l

k) = Zl'-r' - kv.

We seek to satisfy the following relation :

( <infe(r,k) for 0<r< -g
As (1, k) decreases on R*, this will be satisfied iff
©(d/6) 2 0,
ie. iff
2,42
v eV 1

36 12 4r -

We replace & by its value. Therefore, we have to satisfy

BE g 1 By,

(36vr) 12w/ v =

Multiplying by /7, it foliows that
ﬂ2d2 djvil
R0 -5 2 80+ A0,
The constraint 8 < 3/v/d, finally yields after division
174 2,2
Pr ) 2 0 i o= > g1+ Al B Ly (23)

f P
From the relation (21) and the previous calculation, we deduce that for
B < 3/v/d and 7 satisfving the above inequality, we have

Lv; > 0= Lv,




In a.dition, by constructior
v; > v on 8B;.

Consequently, by using the maximum principle we obtain the following re-
lation :

v< v in B;.

In particular
v(M;) £ exp(—kd?®/36)|[v]|co 5,

We do the same for —v, and finally we have

[o{4)] < exp(—kd® /36 vllos,05,, YM; € . (24)

|
Let Qoo be defined by Qo = Q\ Q... The next result establishes an H?
estimate of the solution v of the first basic problem on the domain ).

Lemma 3.4 There etists a constant <y euch thai:

. ' — 1/2
Iolsm < lollons, /o' (1 + L‘ﬂﬁ/c2) . (25)
Proof of lemma 3.4
Let £ € H'(Q) be such that :
! =1 in Q,
l suppfé C Q; U Q.
We have using (12):

/r;(--t//.‘w + div(Ve) + v/7)e% = 0. (26)
By using the Green’s formula we deduce :
—vAvtle ::/ v 2.../ T£1202, 27
S -vavet= [ uvien) [ vivgpo (27)
8




Ox the other hand, we have :
/ﬂ &v(Vo)eiy = /Q div(VEw?/2) — /ﬂ AT (28)

Using the relations (27) and (28), (26} becomes

o
fl

LEAVED + aiv(ves?/2) + €02/r) = [ w07 9€P + o6V - vE)

Ul

[ oiwien)? + 16 + [ (/7 - 0)e® - [ @eIVE2 + vEV.vE)
Q Q Q

il

Jo 9ol + o)+ [ o194 leol®)+ [ (177 - v)ehe?

- [ @t vep 4 v2gvve).

Hence, we abtain :
ol + [ #09E0N + Il + [ (/7= ) =

/Q (002 |VER + 22V - VE).

The relation (13) then vields

vllevl guon, < /Q (VHVE[ + vEVRE) (29)
< YolZa, /ﬂ‘(viv«fl’ + £V.V8) (30)
< MellZoq, (VI3 . + Hélloa IV lEL.)
< olE 0l a0, (v + lElloa IV I/ 1ELa).  (31)

If we take £ such that
[i€llo.q, < 1.
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2
!fll,ﬂ.‘ = C2/d’
where ¢; is a constant, (31) then becomes

172

Ivhan < Pollwan/er/d (14 L0 a70) 7 o)

which is the conclusion of our lemma.
=
Now we are in a position to state the main result of this section.

Theorem 3.1 Let v be the solution of the first basic iroblem (12). If r is
sufficiently small, we have

S 1 -\ 2
lhipzr, £ G Cz/d(l-*';"V“m\/d,/Cz)

(1/v)exp(--kd?/36)ligll_1/2r,»

where Cy and Cy are constants, with C; depending only on d, v,y and &, but
notonr.

Proof of theorem 3.1

The proof of this theorem is based on the above lemmas. Since 8F; C K,
We have

Illcoo8: < l10llco.s, (33)

The leroma. 3.2 then implies

[ivlloc.88: < erllvllon- (34)

Using the lemma 3.3 and the above estimate we obtain:

fe(M;)] < exp(~kd?/36)cy [Ivlloq, Y M, € €.

Consequentiy we have

liolico,n, < ezp(~kd?®/36)e; ||2ll0,0. (35)
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Applying the lemma 3.1 we obtain:

Ci1Co
v

[olleo,01 <

The application of the lemma 3.4 then yields:

1% — 1/2
fIvllia., < cotry/ca/d (1 + l,'—’“u\/-d—/(?;)

(1/v)ezp(~kd* [36)lIgli-1/21r,.

To conclude we use the trace theorem which yields

ollajzr, € eslizfline-

Consequently, we have the final estimate:

14 i
“0“1/2,1‘;' < ¢oq c3\/ CZ/d(l + ﬂ';‘l‘l‘\ﬁtcz)]/‘z

(1/v)exp(~kd*[36)|gll-1 /2,

which corresponds to our theorem with Cy = ¢,¢61¢3 and Cy = ¢q.

4 Second furdamental estimate

ezp(“kd2/35)”9"—-1/2.[‘,,-

(36)

(37)

In this section we shall derive an estimate of the solution of the following

Direchlet problem:

Ly = —vAv+V-Vv+ —}v in Qc,

v = h, on Iy,
v = 0, on I,

(38)
(39)
(40)

where the function k is given in FY/2(T;), the coefficient 7 is strictly positive,
and v is the diffusion coefficient. The velocity field V is given by the relation

(5). Let W be the sub-space of HY(Qy,.) defined by

11




Figure 1: Description of the Domain Q,. and of the splitting used in the
majoration of the local solution.
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W = {w € HY Q)| w = 0 on T}

We then define the following bilinear forms in W:

a(v, w) = v / Vo.Vw+ / div(Vole, (41)
nloc Ql

oC

(v,w) = j:; v, (42)

with » and w in W. The second basic problem associated to (38)-(40)

corresponds to the following problem:
Find v € W such that

a(v,w)+ (1/7)(v,w) = /I‘ v—ggzw, Yw e W, (43)

vlrl = h’ (44)

where h is given in HY 2(T';). We first have the following lemma ;
Lemma 4.1 For r sufficiently small, we have

a(w,w) + (V/7)(w,u) > (U/Q)Hw"imcc, Y € W.

Proof of lemma 4.1:

Under the hypothesis 1/7 > v/2 4 (1/20)]|V||%,, and using the Cauchy-

Schwarz inequality, we obtain :

a(v,v) + (1/7)(w,v) = /ﬂn vVv.Vv 4 /{;l V.Yvu + (1/7) / 2

vitlae

v

vIIVollZ s + (/DII3 2 ~ IV el Voiloallvll0,2
V| Vol + (1/n)l3 5 - (w/2)1 99113 ,
~ (/W23

(/2UVl32 + (tolld 2)-

v

v

13
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We will also make the simplifying assumption (13). We first establish a
global estimate for the solution of the second basic problem.

Lemma 4.2 The solution v of the second basic problem (43)- (44) satisfies:

14+ VI
2

1/2
“v"l.ﬂzoc < 2(1 + 7-2)1/2 (l + ) ”h”1/2,r.' (45)

Proof of lemma 4.2:

Choosing v = v in (43) we obtain :

VLM V% + /m“(d.iv(Vv)v +(1/1)%) = ];" v%:-h. (46)

The lernma. 4.1 then yields

11,04, < 2089/88l| 221, 1Rll3 2. (47)

We shali now establish an estimate of ||8v/dn||.. 1°2.r;- Combining (43) and
(5) we obtain:

v 1
= YV + V. - —vw).
/I‘ S = /ﬂlx(v'n w+ {1/v)V.Vow + z/va)

Therefore, for any w in W, we have

l wl

IA

A 6n 1V vlloa NVellon.. + (1/2)IViec i Vollo . liwllo.gu.

1
Fo—lvllo.ac lwllo,0.

IA

(V00,01 + A/VIZNVOIR g, + (1703030, ) 2
(IVwlid. o, + ol . - (1/)wlld g, )/

(1 + ”V“ )]1/2” 10,01 + T")”’llmlh Doe *

A

[+

14




The trace theorem then yields

. /2
- 1+ vz )’
190/8nll-1/ar, < (1-+ =22 (1 ¢ 220 ) ol .-

(48)
Combining now the relations (47) and (48) we have
1/2
- 1+ [VII2
ol e 201+ 7Y (1 + ———‘2—-”29) Wlzr,  (49)
and hence in particular
5 14+ iR\ )
ol e S 21+ 722 (1 + wf,'-zl-) Wlior,  (50)
B

Let K, = By/4(y) be the sphere centered on y and of radius d/4, with y
belonging to I'v (see Figure 3). By construction, 'y is the center surface of
oc and Q; is the subdomain of width § centered on [y .

We have the following lemma:

Lemima 4.3 There ezisis a constant ¢y such that:
flvfleo, i < e1llvllo, e - (51)
Proof of lemma 4.3:
Following the same argument as in the proof of the lemma 3.2 we obtain:
Ivlloo, iy < exllvllo.gees (52}

where ¢, is a constant depending only ou d,r,v and é. On the other hand
there exist 3, . ..,y in §; such that

Q= | By(yc UKy, =K.

vefl, =l

By applying the relation (52) to each K, we obtain

15




Figure 2: Description of the local domain €,. and of the splitting used in
the majoration of the global solution.

[ivlloo, ¢ £ sup Icl.jllvllo,moc = allollo,ap,,- (53)

I=1,..,

n
Next we shall establish another local estimate for the solution of the second
basic problem (43)-(44). For any M; € Q;, we introduce (see Figure 3):

e a ball B; centered on M; and of radius d/6,
e the function v = ezplk(r? — d?/36)]|1v||c0.55;.
We then have:
Lemma 4.4 The solution v of the second basic problem (48)-(44) satisfies:
[o(Mi)] < ezp[~kd?/36]|[v]|o0,08, - (54)
Proof of lemma. (4.4):

By construction of k (see the previous section), ¢(r,k) is positive for all
r € [0,d/6]. Then by following the same argument as in the proof of the
lemma 3.3 we obtain the inequality (54).

16




N
Let G be the subdomain of (4, described in the Figure 3. The H! global
estimate of the solution of the second basic problem, is obtained in the next
lemma.

Lemma 4.5 The solution v of the second basic problem (§3)-(44) satisfies:

1/2

- v
(olsawon, < e, y/oard (1 P2 /27030 o)

Proof of lemma (4.5):

Consider £ € HY(Qoc), such that:

£ = 1 in £,
{ suppé ¢ QU (56)
Choosing w = £%v in (43) we obtain :
L (~vAv + div(Vv) + (v/7))%v = 0. (57)
loe
Similarly to the proof of the lemma 3.4 we obtain:
vieelhown, < [ (0 19ER + 026V 96).
Choosing £ such that
I€llon. <1
and
IEG.Q, = dg/d,
we finally obtain as in the proof of the lemma 3.4 the ineguality (35).
N

Finally, the majn result of this section is presented in the following the-
orem:

Theorem 4.1 For v sufficiently srall, the solution v of the problem (48)-
(44) satisfies:

17




p 1+ (IViiL
Wov/onllinr, < Ciy/Cald (1+——';’5—“-—)

1% . -\ 172
(1 +'l—-—-| l/” 1/d/02)

(1 +1/7%)ezp(—kd? {36) IRl j2x, (58)
where Cy and Cy are constants with Cy depending only on d,v,v and §.

Proof of theorem 4.1:

Since dB; C X by construction, the lemmas 4.3 and 4.4 imply:
fivllcoinr, < ezp(—kd?*/36)cy [ollo.s, - (59)
Furthermore by using the lernma, 4.2 it follows:

e \ 1f2
. 14 Vil
”v"oo.ﬂ.' <21+ 7 (60)

ar(1+ 1/77) Pexp(=kd? J36)||1])- 1n,r;.
By using the lemma. 4.5 we then obtain:

1+ v\
"v“l,n,,un,- <2 (1 4 - 1/'2 ”%

-\ 1/2 61
Cp,/CQ/d(l“l"”_VVﬂ?ng/Cz)l ( )

(14 1/7*) 2 eap(—kd?/36)i|hlls /o -

Before concluding we shall establish an estimate of the term

”3”/87‘||-1/2,r‘b~

Choosing w such that:

w € Y (Qpe), with w =0 on 80 N AN,

and using (43) we obtain:

18




/Q (-vAv +div(iVev) + o/T)w = 0.
1.3
Applying the Green’s formula and using (5), we obtain:

v 1
; P fnb(Vva + (1/V)V.Vvw + :;tu).

Similarly to the proof of the lemma 4.2 we obtain the following inequality:

1/2
14+ {|VII2, .
19v/9nll-sjar, < (14 1/7)2 (1 T ) Il (62)

The completion of the proof of the theorem results from the combination of
the relation (61) with (62).
L]

5 Convergence analysis of the explicit time march-
ing algorithm

Cousider the following elliptic problem:
¢

-+ VVé-vA$ = 0 inQ,
¢ = P oD I, (63)
¢ = 0 on I‘b,

that we would like to solve by the fundamental algorithmn of {15]. This
algorithmn can be written in this case as

o sel ¢f . = Pof and ¢° = @,.

e them, for n 2> 0,4}, and ¢ being known,
solve
n+1
e 1 VUG - vagE = 0 in Qe
‘;b?o.:l = ¢" onT,, (64)
¢?o‘:' = 0 onTy,

19




¢n,+1
- + V.Vt —vAG™t! = 0 in Q,

¢"+1 = ¢ ON I.‘o<>) (65)
pn+l LD D

uao = u%‘&- on I';.
on on

We shall show in this section that this algorithm converges, and the
converged solution corresponds to the solution of the initial problem {63).
Mote precisely we have the following theorem.

Theorem 5.1 For r sufficiently small, ¢ being the solution of the stafionary
problem (63), we have :

dgrt? 0¢ .
1) e °¥ -1/2
1) B converges to 3 H-YTy),

it) ¢™* converges to ¢ in BYV/(T,),
i) #"*! converges to ¢ in H(Q),

iv) ¢pt! converges to ¢ in H Y Qoe)-

Proof of theorem 5.1;

By the transformation ¢™*+! — ¢"+1— 4 with ¢ the solution of the stationary
problem, this problem can be reduced to the case ¢o, = 0. Mulitiplying the
equation in (64) by w € W, integrating by parts, we obtain:

n+41
2’2‘-10 -+ / KVQ&;;':lw + v Vdﬁ:t‘Vw
n!oc T Qloc nloc
8¢n+1
= u/ lee_y, vwe W, (66)
r;, On

We now apply the theorem 4.1 and we obtain

Bé"“ - 1
15 laar, < /a/d (14 550+ Vi) (67)
20




i 1/2
(14 21Vller/a14,)

(1+ 1/72)exp(—kd2/36)||¢’>"![1/2‘r'.

Oxn the other hand, multiplying the equation in (65) by w € W and inte-
grating by parts we obtain the equality

a1 n+-1
/né;—w-% /QV.Vcﬁ”“w+V/QV¢"“Vw = V./r i(gi’ﬁ-w (68)
o o

n

with w € X)) and w = 0 on T'y. Applying the theorem 3.1 to this
problem yields:

—— 1 1/2
n41 et {
1" aar, S exyfeafd (14 21V lerr/a22)

ezp(~-kd®[36){|80¢15" /0nll-1 /2, - (69)

Combinig (67) and (69), we then have:

2 11 1
1885 fonllorszr, < Ay/er/d(1+ =5 (14 (VIIZ))
Lo o\
(1+ 21V b7
—_ 1 —_— 1/2
ry/eafd (1 LV lleor/fd723)

d?
(1 + 1/1‘2)6.’17}) ("k'l_s') naéizc/an”—l/lrb:

with k = ;—'B—; Therefore for 7 sufficiently small, the coefficient of reduction

will be dominated by the exponeniial term and will then be strictly less
than 1, implying the linear convergence to zero of

847,61 /0nll-v/2,-
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This corresponds exactly to the statement (i). This statement combined
with (69) leads tc the convergence of ¢"*! to 0 in F1/3(T;). Applying (14)
with ¢ = 64)?"'1/ dn, we have in addition

oc

. ¢
6™ Mo < 218674 /90l -1 o r,
and therefore fj¢"**{|;,n converges to zero at the speed of Nogrtt/anli_y f2Ts-

Applying now (45) with A = ¢™, we also have

1 i/2
95 i < 204 172 (14 204 IVIZ)) T 16N,

And then [|¢"*||; o also converges to zero at the speed of 6™ l11/2,r;
a

5.1 Convergence of a fixed point metnod for the implicit
time mnarching algorithm

The implicit time marching algorithm of {15] couples the global and the local
problem. To uncouple them, it is advisable fo use the fixed point agorithm
below :

e set, é?oc.() = ¢‘01 and ¢o = 1/"05
s then for k > G,q&’,’c‘l? being known,

solve

+1
Plocks1 ~ Ploe

At ._—-+div(v¢;::t‘ll.c+1)"VA¢lno:1k+l = 0 in Qlocv
¢E>t,1k+1 = ¢2+1 on Ty,
¢;:>t,]k+1 = 0 on I, _

(70)
¢;t+l _ ¢n
_—.—%t—“ +div(véil]) - vAgil = 0 in 0,
il = ¢ on T,
v$ti/on = vOdiots1/0n on Ty.

(71)
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We will study now the algorithm (70)-(71). By setting

wloc,k,q = 45;:21];.‘.1 -9 ;:,t";+1s (72)
Yrg = (5 — 43%), (73)

we have that 9ok, and ¥ 4 verify the following equations :

'd’lnc,k,q/Ai + div('vd’loc.k‘q) - VA¢loc,k,q = 0 in o,

Yr-14-1 on Ty (74)

t
)

1J’!oc,k,q

Viockg = 0 on T,

" Prg/ At + div(vrg) = vAYr,, = 0 in §,

ey = 0 on I'y, (75)
a"/’k.q - 3¢10c.1:,q
I/—a—n- = U-—-‘é‘;l——“ n F,l,.

If At is sufficiently small, we can apply the analysis of the previous
section to this algorithm and we conclude that i, and ¥ »g conv rge
linearly to zero. Hence the sequences ¢}*" and ¢J;t} are Cauchy sequences,
which converge linearly to the unique solutions ¢"*! and #7F? of the iraplicit
scheme. This guarantees the convergence of the above fixed point algorithm.
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Appendix

The main result of this section relies on the notion of a contact set. If
is a continuous arbitrary function on €2, the upper contact set, denoted I'+
or '}, is the sub-set of {2, defined by

I'* = {y € Q.3p(y) € K such that wz)Suly)+p-(z-y)¥z € Q).
(76)

We see that u is a concave function on §2 iff I't = Q. When u € ¢! ()
we must have p == Du(y) in the relation (7). In addition, when u € C2(Q2),
the Hessian matrix D%u = [Djju] is negative on T+, Tn general, I'+ is closed
in 8.

I z is a continuous arbitrary function on {2, we define the “normal
mapping” x(y) = xu(7} 2t point y € Q by

x(w) = {p € R*, v(2) £ u(y) + p(z — y) ¥z € Q). (77)
We can see that x(y) is non empty iff y € I't. In addition when € C1(Q),
we have x(y) == Du(y) on I't; in other words y is tb- Jsadient field of v on
r+,
As a particular case of the Bakelman-Alexandrov ([8] and [9]) maximum
principle, we have under the above notation.

Lemma .1 For u € C?(Q)n C°({1), we have :

d .
SUp L < supsn® + =y lla¥ Diju/D7|fu p+
n

Wn

with d the diameter of ) and w, the volume of a unit sphere in R™.

For further deiails see [12].

We now proceed to the proof of Theorem 6.1, by following the steps of
[12]. We take B = B,(0) and the general case will be deduced by considering
the coordinate transform, z — & = (z - y)/2R.

We will begin, in first step, by showing this result for u € ) n
W2($}) and then in a second step we will deduce the result for u € W3n(Q).

Step 1:
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We suppose that u € C2(Q) N W?27(§1). For B > 1, we consider the cv*
off function % defined by

(2) = (1- [31%)°.
By differentiation, we obtain
Din= -2p:(. - |5%)°7",
Dijn = —288;(1 — 1217577 + 48(8 — 1)2:3;(1 - |31°)P~2.

By setting
v = ny,

we then obtain
@ Dyv = na" Dyju + 289 DinDju + wa” Dijn
> o(f - bDu--éu)+ 26" DinDju + ud Din.
Let T == T} be the upper contact set v, in the sphere B ; we have :
«>0onT",
If & € 85 such that p.(z — y) < 0 we indeed have v(z) = 0. Consequently
oy} + pz—y) > v(z) = 0.

Moreover, using the concavity of v on I't, we can estimate the following
quantity :

|Dul = (1/9)|Dv — uDn].

Indeed,
|Da] < (/m)|Do]+|D))
< (Un)(;—_’immmm)
< 21+ B0y,

In tha* way, we have on I'' the following inequality :
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=6 Dyv < {(164% + 29B8)An~0+
26187718 -+ E}v + 91 f1.
Since é < 0, we deduce the inequality
-9 Dijv < {(168% + 208)An~P + (78)
281bin~ P} v + 9| f|
< al Byt |f),

with ¢; = c(n,ﬂ,*y,?i) independent of é. )
Consequently, by applying Lemma 6.1 on B, we obtain, for 3 >2:

d -
Su?v < ( 1/,1)(_“)“01’\71 By 1IN, B

By using the relation (2), it comes

wpy < (—2melln ol + (T, 1,,)( WA,5
B NWn
cld(un*’/”vnn,g + (1/A)nfnn,3)
erd(ln*Po* |, 5 + (1A, 5)
< aad((supv*) BB, o+ (/RN 5)s

A

A

where ¢; is a constant depending only on n,B,v and 4. Here, d is the
diameter of B(d == 2).
By using the Young inequality under the form

ab < ea¥ + /oy
for == (1--2/8)"! and r = B/2, we have

(supv™ =Bl (u¥ V1P| 5 < coupvt 4 £18 (et B, v s> 0.

. 1 o . . .
By taking ¢ = W and plugging in our inequality on v, we obtain :
¢
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supv < (1/2)supvt + (1/2) P2 (e () MOPZ (1)
B ™

+erd/ O I, 5-

We want to prove the theorem for all p > 0. We will treat separately
the cases p £ nand p > n.
Ifp<n,weset §=2n/p. In this casc we have

I PR2E = i, 5

Plugging this in our inequality on v, we obtain :

(1/2) supv < (1/2)' 22 (1Y P (v, g + (2d/ DI fl,. 8-
B
Consequently, we obtain the following inequality ;

wp < eal( (N + (@20l p)-
Oax the sphere By /5(0), the cut off function satisfies
1/n < (1/2)°.
Tt follows, then
sup u < sup (v/n)
B, 12(0) By 2(0)

< 2 sup v.
B
Finally we end up at the desired estimate
sup u < ea{( [, («* )7+ (d/20)IIf1l,, 5)-
By3(0) B

for v in W2 ()N C? (). The constant c3 above depend only on n, 3,y and
4, but is independent of é.
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On the other hand if p > n, we have :

/B <p, V32> 2.
Then, it follows (by assuming 8 > 2)

BV, o < Bt g
But

lfetllange = li(w* /21272,

and therefore, by processing as before, we obtain the desired estimate

sup u < cof( [ (WP 4 (d/23)]I 1, 5}
By/4(0) 5
for u in W>™(Q) N C?(Q1). The constant ¢4 above depends only on », 5, v
and 8, but is independent of é.
Transformation # — 2.

By construction, D;, = R™2D;j, thus § = R~?X and § = 6R%. In
addition, we have |B] = w,(2R)" and [g]?'g = R™"?|g|, B
Written in term of iz, the last inequality becomes

2" w 2w/ R
sup 4 < ¢ —--—-'1/ ut)Pdz)lfv 4 (22 ,
B;i,, 4{( 5 B( Ydz) ( 7 S llne}

with ¢4 a function of n,v, § = 6R? and p. This is the desired estimate for
u € WH™(Q)n Co($).
Step 2:

Now, let u € W2"({}). By density, let (um) be a sequence of functions
of C?(B), converging towards u in W2™(B). The injection of W2n(B) in
C°(B) is continuous, consequently (u,,) converges uniformly towards v in
B. We have

i

Lu,, L{ty ~u)+ Lu

2 [+ L(um - u).
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By setting, fm = L(um — u), we observe by construction that f,, con-
verges towards 0 in L"(R). As un, € W) C* () and fom = f+ fm is
in I(Q), the estimate (3) is valid also for um,, so that we have

1 R,
< eted(— +p1/p+___ ~B8}. 80
2 v < tef( JL@s P + S Fls) (80)

Using previous results and taking the limit, we have :

1 R,
sup u < cte{(—= | (w*P)M? + Ziiflln.B}-
s w s etel(ggy [P+ Jiiflz)

[ ]
Observe also that by replacing u by —u, the theorem can be extended
easily to the case «f supersolutions and solutions of the equation :

Lu = f.
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